

F96 - RELATÓRIO DE ENSAIO
Relatório N° 5079a/2023

1. Dados do Cliente
Razão Social: Alumiconte Componentes de Aluminio EIRELI
Endereço: Rua Conde de Porto Alegre, 1000, Bairro Centro, Vila Flores/RS - CEP 95334-000
A/C: Lucas Júnior Mezadri
Código da Proposta/Pedido: 8745/5751 e 7644/4922

2. Objetivo
Analisar o desempenho da esquadria externa utilizada em edificação descrita no item 4 quanto aos requisitos de permeabilidade ao ar, estanqueidade à água e comportamento mecânico frente às cargas uniformemente distribuídas, conforme ABNT NBR 10821-3:2017.

3. Responsáveis
Relatório de Ensaio autorizado por: Dr. Eng. Civil Roberto Christ
Responsável pelo Ensaio: Dr. Eng. Civil Roberto Christ
Analista de Projetos: Bianca Gass Walter
Laboratoristas: Aimée Neis e Isadora Bassani

4. Amostras para análise
A amostragem é responsabilidade do Cliente.
Data de Recebimento: 13/10/2022
Número da Amostra: 10797
Período de Realização do Ensaio: de 06/12/2022 e 07/12/2022
Local da realização das atividades do Ensaio: nas dependências permanentes do itt Performance (Unisinos).

O corpo de prova consiste em uma esquadria de correr com persiana integrada, descrita na Tabela 1, conforme

O corpo de prova consiste em uma esquadria de correr com persiana integrada, descrita na Tabela 1, conforme informações fornecidas pelo contratante, sendo ele também responsável pela sua instalação. A instalação foi feita em um sistema de vedação vertical, também descrito na Tabela 1. No Anexo A é apresentado o projeto da esquadria. A Figura 1 apresenta a vista interna da esquadria e a Figura 2 expõe a vista externa da esquadria instalada. De acordo com solicitação do cliente, a esquadria é instalada em edificações com até 30 pavimentos e  $\frac{\varpi}{2}$ localizadas na Região V, conforme ABNT NBR 6123:1988.

Documento assinado eletronicamente. Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

Fone: 51 3590-8887 - e-mail: ittperformance@unisinos.br www.unisinos.br/itt/ittperformance



# UNISINOS

## F96 - RELATÓRIO DE ENSAIO Relatório Nº 5079a/2023

Tabela 1 - Composição construtiva da amostra

| Nomenclatura  Dimensões  Altura do marco: 1400 mm - Largura do marco: 1500 mm Altura da folha: 1186 mm - Largura da folha: 671 mm  Marco simples e perfis de alumínio, linha "ALUMICONTE NOSTRA LINHA Os perfis possuem espessura máxima de 1,5 mm. Os componentes utiliza para vedação entre folha/trilho/marco são: escova de vedação vertical polipropileno de 5 x 8 mm, fita de vedação horizontal de polipropileno de 7 mm, conforme descrição inicial fornecida pelo contratante. Ajuste realizado p cliente: regulagem da altura da folha para com o trilho, diminuindo a distância folha com o trilho inferior e aplicação de silicone entre as folhas interna externas.  Possui uma caixa de drenagem, no trilho inferior, no centro entre as folhas dimensão de 58,4 x 5 mm, conforme descrição inicial fornecida pelo contrata Ajuste realizado pelo cliente: aplicação de silicone na caixa do dreno.  A amostra possui 2 rasgos de drenagem (Largura x Altura: 58,4 x 5 m conforme descrição inicial fornecida pelo contratante. Ajuste realizado pelo centra de diminuição de um dos rasgos mais próximos do centro da esquadria parte externa da esquadria. Largura final: 38,77 mm.  Altura da aba interna do trilho  Vidro Vidro insulado 17 mm  Persiana  Persiana de alumínio.  A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com silic preto.  Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestimes                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Sistema         | Descrição                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Altura do marco: 1400 mm - Largura do marco: 1500 mm Altura da folha: 1186 mm - Largura da folha: 671 mm  Marco simples e perfiis de alumínio, linha "ALUMICONTE NOSTRA LINHA Os perfiis possuem espessura máxima de 1,5 mm. Os componentes utiliza para vedação entre folha/trilho/marco são: escova de vedação vertical polipropileno de 5 x 8 mm, fita de vedação horizontal de polipropileno de 7 mm, conforme descrição inicial fornecida pelo contratante. Ajuste realizado policiente: regulagem da altura da folha para com o trilho, diminuindo a distância folha com o trilho inferior e aplicação de silicone entre as folhas interna externas.  Possui uma caixa de drenagem, no trilho inferior, no centro entre as folhas dimensão de 58,4 x 5 mm, conforme descrição inicial fornecida pelo contrata Ajuste realizado pelo cliente: aplicação de silicone na caixa do dreno.  A amostra possui 2 rasgos de drenagem (Largura x Altura: 58,4 x 5 m conforme descrição inicial fornecida pelo contratante. Ajuste realizado pelo cliente: aplicação de silicone na caixa do dreno.  A amostra possui 2 rasgos de drenagem (Largura x Altura: 58,4 x 5 m conforme descrição inicial fornecida pelo contratante. Ajuste realizado pelo cliente: diminuição de um dos rasgos mais próximos do centro da esquadria parte externa da esquadria. Largura final: 38,77 mm.  So mm  Altura da aba interna do trilho  Vidro  Vidro insulado 17 mm  Persiana  Persiana de alumínio.  A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com silic preto.  Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestime interno e externo em argamassa industrializada convencional e espessura to                                                                                                                                                                                |         | Nomenclatura    | ·                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Marco simples e perfis de alumínio, linha "ALUMICONTE NOSTRA LINHA Os perfis possuem espessura máxima de 1,5 mm. Os componentes utiliza para vedação entre folha/trilho/marco são: escova de vedação vertical polipropileno de 5 x 8 mm, fita de vedação horizontal de polipropileno de 7 mm, conforme descrição inicial fornecida pelo contratante. Ajuste realizado polipropileno de 1 mm, conforme descrição inicial fornecida pelo contratante. Ajuste realizado policiente: regulagem da altura da folha para com o trilho, diminuindo a distância folha com o trilho inferior e aplicação de silicone entre as folhas dimensão de 58,4 x 5 mm, conforme descrição inicial fornecida pelo contrata Ajuste realizado pelo cliente: aplicação de silicone na caixa do dreno.  A amostra possui 2 rasgos de drenagem (Largura x Altura: 58,4 x 5 m conforme descrição inicial fornecida pelo contratante. Ajuste realizado policiente: diminuição de um dos rasgos mais próximos do centro da esquadria parte externa da esquadria. Largura final: 38,77 mm.  Altura da aba interna do trilho  Vidro Vidro insulado 17 mm  Persiana  Persiana de alumínio.  A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com silic preto.  Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestime interno e externo em argamassa industrializada convencional e espessura to despessura t |         | Dimensões       | Altura do marco: 1400 mm - Largura do marco: 1500 mm                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Amostra  Drenos  dimensão de 58,4 x 5 mm, conforme descrição inicial fornecida pelo contrata Ajuste realizado pelo cliente: aplicação de silicone na caixa do dreno.  A amostra possui 2 rasgos de drenagem (Largura x Altura: 58,4 x 5 m conforme descrição inicial fornecida pelo contratante. Ajuste realizado por cliente: diminuição de um dos rasgos mais próximos do centro da esquadria parte externa da esquadria. Largura final: 38,77 mm.  Altura da aba interna do trilho  Vidro  Vidro  Vidro insulado 17 mm  Persiana  Persiana de alumínio.  A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com silic preto.  Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestime interno e externo em argamassa industrializada convencional e espessura to description de silicone na caixa do dreno.  A amostra possui 2 rasgos de drenagem (Largura x Altura: 58,4 x 5 m conforme descrição inicial fornecida pelo contratante. Ajuste realizado pro encilonate externo de asquadria. Largura final: 38,77 mm.  50 mm  Persiana  Persiana de alumínio.  A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com siliconator de contramarco foi selada  |         | Perfil/vedações |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Rasgos de drenagem conforme descrição inicial fornecida pelo contratante. Ajuste realizado pelo contratante.                                                                                                                                                                                                                                                                                                      | Amostra | Drenos          | Possui uma caixa de drenagem, no trilho inferior, no centro entre as folhas de dimensão de 58,4 x 5 mm, conforme descrição inicial fornecida pelo contratante Ajuste realizado pelo cliente: aplicação de silicone na caixa do dreno.                                                 |  |  |  |  |  |  |
| interna do trilho  Vidro  Vidro  Vidro insulado 17 mm  Persiana  Persiana de alumínio.  A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com silico preto.  Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestime interno e externo em argamassa industrializada convencional e espessura to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | drenagem        | A amostra possui 2 rasgos de drenagem (Largura x Altura: 58,4 x 5 mm) conforme descrição inicial fornecida pelo contratante. Ajuste realizado pelo cliente: diminuição de um dos rasgos mais próximos do centro da esquadria, na parte externa da esquadria. Largura final: 38,77 mm. |  |  |  |  |  |  |
| Vidro Vidro insulado 17 mm  Persiana Persiana de alumínio.  A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com silic preto.  Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestime interno e externo em argamassa industrializada convencional e espessura to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Persiana Persiana de alumínio.  A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com silico preto.  Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestime interno e externo em argamassa industrializada convencional e espessura to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                 | Vidro insulado 17 mm                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| A fixação mecânica entre o contramarco (especificação: CA-060) e o SVVE feita com o uso de chumbador do tipo cadeirinha, parafusos e argama cimentícia. A fixação entre marco e contramarco foi realizada por meio parafusos. A interface entre o marco e o contramarco foi selada com silic preto.  Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestime interno e externo em argamassa industrializada convencional e espessura to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestime<br>Vedação vertical interno e externo em argamassa industrializada convencional e espessura t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Fixação         | feita com o uso de chumbador do tipo cadeirinha, parafusos e argamassa cimentícia. A fixação entre marco e contramarco foi realizada por meio de parafusos. A interface entre o marco e o contramarco foi selada com silicone                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Veda    | ação vertical   | Blocos cerâmicos estruturais de dimensões 14 x 19 x 29 cm com revestimento interno e externo em argamassa industrializada convencional e espessura tota                                                                                                                               |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                 |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |





Figura 1 - Vista interna da esquadria instalada

Figura 2 - Vista externa da esquadria instalada

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

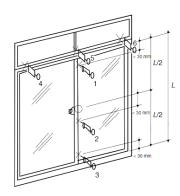
**PERFORMANCE** 

### F96 - RELATÓRIO DE ENSAIO Relatório Nº 5079a/2023

Os ensaios de permeabilidade ao ar e estanqueidade à água seguem as prescrições dos itens 5 e 6 da ABNT NBR 💆 10821-3:2017. Foi utilizada uma câmara de pressão e aspersão de água, projetada para que atenda o Método A ⊗ da referida norma (ver Figuras 3 e 4). O ensaio de verificação das cargas uniformemente distribuídas segue as 🖁 prescrições do item 7 da ABNT NBR 10821-3:2017, utilizando a mesma câmara do ensaio de estanqueidade à 🖱 água. Os medidores de deslocamento são posicionados na face interna da esquadria (ver Figura 5), no montante horizontal da folha em vidro, como prescreve o Anexo C da ABNT NBR 10821-3:2017. As deformações reais do perfil horizontal (Da,máx) e do perfil vertical (Db,máx) da esquadria são calculadas de acordo com as Equações 1 e 2, respectivamente.

Figura 3 – Parte externa da câmara de ensaios

Figura 4 – Parte interna da câmara de ensaios


Figura 5 – Posicionamento dos relógios comparadores

D<sub>a</sub> max = D5 – (D4 + D6) (2)

Os requisitos para a classificação das esquadrias externas são estabelecidos conforme a região do país, o número de pavimentos e a altura da edificação. As regiões que determinam as pressões addadas no ensaio são água. Os medidores de deslocamento são posicionados na face interna da esquadria (ver Figura 5), no montante





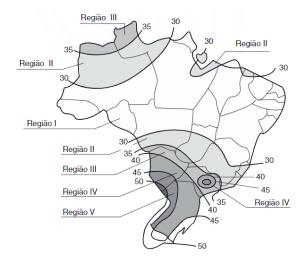


$$D_a max = D5 - \left(\frac{D4 + D6}{2}\right) \qquad D_b max = D2 - \left(\frac{(D1 - D5) + D3}{2}\right)$$
(1)

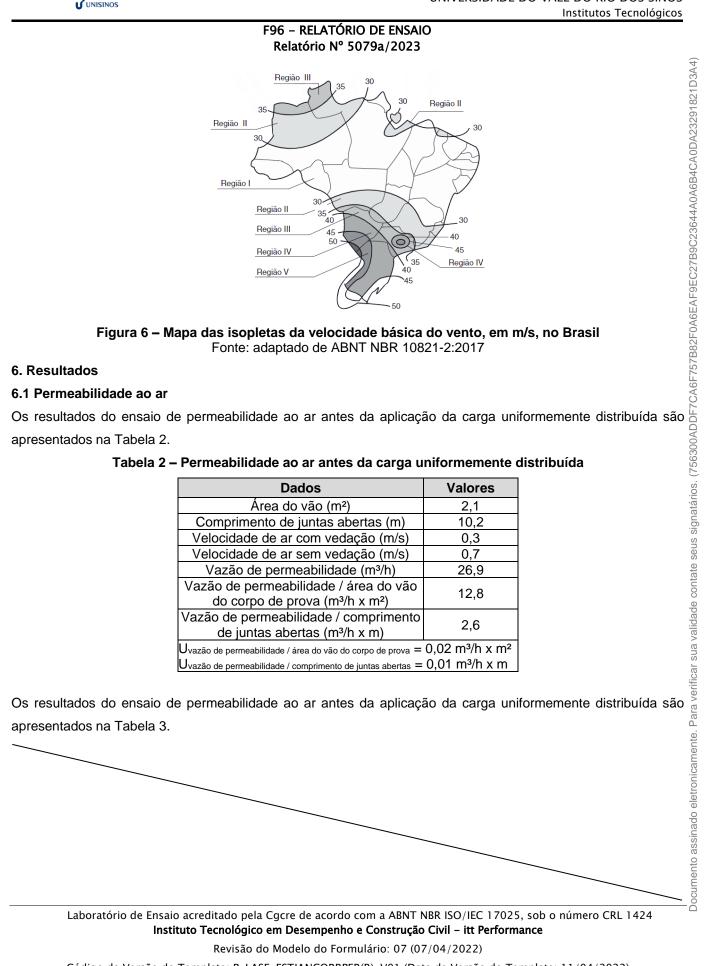
Os requisitos para a classificação das esquadrias externas são estabelecidos conforme a região do país, o número de pavimentos e a altura da edificação. As regiões que determinam as pressões adotadas no ensaio são especificadas na Figura 6 e no Anexo B deste relatório.

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424

Instituto Tecnológico em Desembenho e Construção Civil – itt Performance


Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)


Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4





| Dados                                                                     | Valores |  |  |  |  |  |
|---------------------------------------------------------------------------|---------|--|--|--|--|--|
| Área do vão (m²)                                                          | 2,1     |  |  |  |  |  |
| Comprimento de juntas abertas (m)                                         | 10,2    |  |  |  |  |  |
| Velocidade de ar com vedação (m/s)                                        | 0,3     |  |  |  |  |  |
| Velocidade de ar sem vedação (m/s)                                        | 0,7     |  |  |  |  |  |
| Vazão de permeabilidade (m³/h)                                            | 26,9    |  |  |  |  |  |
| Vazão de permeabilidade / área do vão do corpo de prova (m³/h x m²)       | 12,8    |  |  |  |  |  |
| Vazão de permeabilidade / comprimento de juntas abertas (m³/h x m)        | 2,6     |  |  |  |  |  |
| Uvazão de permeabilidade / área do vão do corpo de prova = 0,02 m³/h x m² |         |  |  |  |  |  |
| Uvazão de permeabilidade / comprimento de juntas abertas =                |         |  |  |  |  |  |



Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4



Tabela 3 - Permeabilidade ao ar após carga uniformemente distribuída

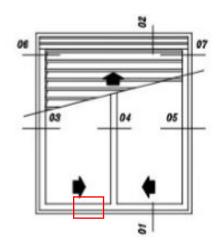
| Dados                                                               | Valores        |
|---------------------------------------------------------------------|----------------|
| Área do vão (m²)                                                    | 2,1            |
| Comprimento de juntas abertas (m)                                   | 10,2           |
| Velocidade de ar com vedação (m/s)                                  | 0,3            |
| Velocidade de ar sem vedação (m/s)                                  | 1,0            |
| Vazão de permeabilidade (m³/h)                                      | 47,33          |
| Vazão de permeabilidade / área do vão do corpo de prova (m³/h x m²) | 22,5           |
| Vazão de permeabilidade / comprimento de juntas abertas (m³/h x m)  | 4,64           |
| Uvazão de permeabilidade / área do vão do corpo de prova =          | 0,02 m³/h x m² |
| Uvazão de permeabilidade / comprimento de juntas abertas =          |                |

## 6.2 Estanqueidade à água

Os resultados da amostra no ensaio de estanqueidade à água podem ser verificados na Tabela 4. As Figuras 7 e 8 complementam a informação das ocorrências.

Tabela 4 - Resultados verificados no ensaio de estanqueidade à água

| Pressão de ensaio (Pa) | Observações                                                                                                                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                      | Presença de água no trilho (ver Figura 7) –9min 23s após aplicação da pressão.                                                                    |
| 20                     | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, não foi observado escoamento.               |
| 40                     | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, não foi observado escoamento.               |
| 60                     | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, não foi observado escoamento.               |
| 80                     | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, houve escoamento.                           |
| 100                    | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, houve escoamento.                           |
| 130                    | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, houve escoamento.                           |
| 160                    | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, houve escoamento.                           |
| 190                    | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, houve escoamento.                           |
| 220                    | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, houve escoamento.                           |
| 250                    | Presença de água no trilho durante todo o período de aplicação de pressão.  Quando cessada a pressão, houve escoamento.                           |
| 280                    | Presença de água no trilho durante todo o período de aplicação de pressão.  Ocorrência de PI (ver Figura 8) – 3min 56s após aplicação da pressão. |
| 300                    | Presença de água no trilho durante todo o período de aplicação de pressão.<br>Quando cessada a pressão, houve escoamento.                         |


Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4





(b)

Figura 7 – (a) Indicação da presença de água no trilho e (b) localização do ponto de vazamento



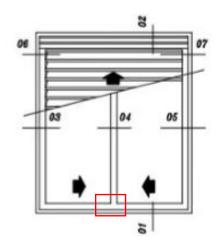



Figura 8 - (a) Indicação da ocorrência de PI e (b) localização do ponto de PI

### 6.3 Comportamento mecânico

# 6.3.1 Comportamento sob cargas uniformemente distribuídas (deformação)

Documento assinado eletronicamente. Para verificar sua validade contate seus signatários. (756300ADDF7CA6F757B82F0A6EAF9EC27B9C23644A0A6B4CA0DA23291821D3A4) A Tabela 5 apresenta os resultados de deformação obtidos no ensaio de pressão positiva sob cargas uniformemente distribuídas.

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4



| UNISINOS                         |                                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                      |                                                                 |                                                                                  | In                                                                                        |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                                                   |                                                                                                                                                     | 96 – RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                      |                                                                 |                                                                                  |                                                                                           |
|                                  |                                                                                                                                                                                   |                                                                                                                                                     | Relatór                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 N° 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0/9a/                                                                                                   | 2023                                                                                 |                                                                 |                                                                                  |                                                                                           |
|                                  | Tabela 5 – D                                                                                                                                                                      | eform                                                                                                                                               | ação o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | btida r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | no ens                                                                                                  | aio de                                                                               | press                                                           | ão posit                                                                         | iva                                                                                       |
|                                  | Droose (Do)                                                                                                                                                                       |                                                                                                                                                     | De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | forma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ção (m                                                                                                  | m)                                                                                   |                                                                 | D .                                                                              | D                                                                                         |
|                                  | Pressão (Pa)                                                                                                                                                                      | D1                                                                                                                                                  | D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D4                                                                                                      | D5                                                                                   | D6                                                              | D <sub>a,máx</sub>                                                               | D <sub>b,máx</sub>                                                                        |
|                                  | 546                                                                                                                                                                               | 1,5                                                                                                                                                 | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,3                                                                                                     | 0,7                                                                                  | 0,3                                                             | 0,4                                                                              | 0,9                                                                                       |
|                                  | Residual                                                                                                                                                                          | 0,1                                                                                                                                                 | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                                                                                     | 0,0                                                                                  | 0,0                                                             | 0,0                                                                              | 0,0                                                                                       |
|                                  | 1092                                                                                                                                                                              | 2,8                                                                                                                                                 | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,5                                                                                                     | 1,3                                                                                  | 0,6                                                             | 0,7                                                                              | 1,9                                                                                       |
|                                  | Residual                                                                                                                                                                          | 0,1                                                                                                                                                 | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                                                                                     | 0,0                                                                                  | 0,1                                                             | 0,0                                                                              | 0,0                                                                                       |
|                                  | 1820                                                                                                                                                                              | 4,4                                                                                                                                                 | 6,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4                                                                                                     | 2,5                                                                                  | 1,2                                                             | 1,2                                                                              | 3,9                                                                                       |
|                                  | Residual                                                                                                                                                                          | 0,4                                                                                                                                                 | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,1                                                                                                     | 0,1                                                                                  | 0,1                                                             | 0,0                                                                              | 0,1                                                                                       |
|                                  |                                                                                                                                                                                   | ) <sub>a,máx</sub> a                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                      |                                                                 |                                                                                  | ,2                                                                                        |
|                                  | D <sub>a,máx</sub> , permi                                                                                                                                                        | •                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         | •                                                                                    | າ)                                                              |                                                                                  | ,3                                                                                        |
|                                  |                                                                                                                                                                                   | c residu                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                      |                                                                 |                                                                                  | ,0                                                                                        |
|                                  | D <sub>a,máx</sub> residual, p                                                                                                                                                    |                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         | )821-2                                                                               | (mm)                                                            |                                                                                  | ,8                                                                                        |
|                                  |                                                                                                                                                                                   | ) <sub>b,máx</sub> a                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                      |                                                                 |                                                                                  | ,9                                                                                        |
|                                  | D <sub>b,máx</sub> , permi                                                                                                                                                        |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                      | ו)                                                              |                                                                                  | ,5                                                                                        |
|                                  |                                                                                                                                                                                   | residu                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                       |                                                                                      | , ,                                                             | 0                                                                                |                                                                                           |
|                                  | D <sub>b,máx</sub> residual, p                                                                                                                                                    | ermitida                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         | )821-2                                                                               | (mm)                                                            | 4                                                                                | ,5                                                                                        |
|                                  |                                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $U = 0,^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ı mm                                                                                                    |                                                                                      |                                                                 |                                                                                  |                                                                                           |
|                                  | ~ ~ .                                                                                                                                                                             |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nrmar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -ão (mi                                                                                                 | m)                                                                                   |                                                                 |                                                                                  |                                                                                           |
|                                  | Pressão (Pa)                                                                                                                                                                      | D1                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ão (m                                                                                                   |                                                                                      | D6                                                              | D <sub>a,máx</sub>                                                               | D <sub>b,máx</sub>                                                                        |
|                                  |                                                                                                                                                                                   | <b>D1</b>                                                                                                                                           | D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D4                                                                                                      | D5                                                                                   | <b>D6</b>                                                       |                                                                                  |                                                                                           |
|                                  | -546<br>Residual                                                                                                                                                                  | <b>D1</b> -1,4 0,0                                                                                                                                  | <b>D2</b> -1,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>D4</b><br>-0,3                                                                                       | <b>D5</b><br>-0,9                                                                    | <b>D6</b> -0,4 0,0                                              | -0,6                                                                             | -1,2                                                                                      |
|                                  | -546                                                                                                                                                                              | -1,4                                                                                                                                                | D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>D3</b> -0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D4                                                                                                      | D5                                                                                   | -0,4                                                            |                                                                                  |                                                                                           |
|                                  | -546<br>Residual                                                                                                                                                                  | -1,4<br>0,0                                                                                                                                         | <b>D2</b><br>-1,7<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>D3</b><br>-0,5<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>D4</b><br>-0,3<br>0,0                                                                                | <b>D5</b><br>-0,9<br>0,0                                                             | -0,4<br>0,0                                                     | -0,6<br>0,0                                                                      | -1,2<br>0,0                                                                               |
|                                  | -546<br>Residual<br>-1092                                                                                                                                                         | -1,4<br>0,0<br>-2,3                                                                                                                                 | <b>D2</b> -1,7 0,0 -2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0,5<br>0,0<br>-1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0,3<br>0,0<br>-0,5                                                                                     | -0,9<br>0,0<br>-1,7                                                                  | -0,4<br>0,0<br>-0,8                                             | -0,6<br>0,0<br>-1,0                                                              | -1,2<br>0,0<br>-2,1                                                                       |
|                                  | -546<br>Residual<br>-1092<br>Residual                                                                                                                                             | -1,4<br>0,0<br>-2,3<br>-0,1                                                                                                                         | <b>D2</b> -1,7 0,0 -2,9 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0,5<br>0,0<br>-1,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0,3<br>0,0<br>-0,5<br>0,0                                                                              | -0,9<br>0,0<br>-1,7<br>0,0                                                           | -0,4<br>0,0<br>-0,8<br>0,0                                      | -0,6<br>0,0<br>-1,0<br>0,0                                                       | -1,2<br>0,0<br>-2,1<br>0,0                                                                |
|                                  | -546 Residual -1092 Residual -1820 Residual                                                                                                                                       | -1,4<br>0,0<br>-2,3<br>-0,1<br>-4,1                                                                                                                 | D2   -1,7   0,0   -2,9   0,0   -5,3   -0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0<br>-0,5<br>0,0<br>-1,1<br>0,0                                                                       | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7                                                   | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4                              | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0                                         | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7                                                        |
|                                  | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi                                                                                                                        | -1,4<br>0,0<br>-2,3<br>-0,1<br>-4,1<br>-0,2<br>D <sub>a,máx</sub> altida pe                                                                         | -1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>rada (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0,3<br>0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>nm)<br>10821                                               | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1                                           | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0                       | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8                               | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,0<br>,3                                     |
|                                  | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi                                                                                                                        | -1,4<br>0,0<br>-2,3<br>-0,1<br>-4,1<br>-0,2<br>D <sub>a,máx</sub> a<br>tida pe                                                                      | D2<br>-1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>Dresent<br>a ABN<br>al apre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>ada (m<br>T NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0,3<br>0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>nm)<br>10821<br>la (mm                                     | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1                                           | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0                       | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8                               | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>0,0<br>0,0<br>0,0                            |
|                                  | -546 Residual -1092 Residual -1820 Residual  [Da,máx, permidual, pa,máx]                                                                                                          | -1,4<br>0,0<br>-2,3<br>-0,1<br>-4,1<br>-0,2<br>D <sub>a,máx</sub> a<br>tida pe<br>residu<br>ermitida                                                | -1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>oresent<br>a ABN'<br>al apre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>ada (m<br>T NBR<br>sentac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0,3<br>0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>nm)<br>10821<br>la (mm                                     | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1                                           | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0                       | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8                               | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,0<br>,3<br>,0<br>,8                         |
|                                  | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p                                                                                                     | -1,4<br>0,0<br>-2,3<br>-0,1<br>-4,1<br>-0,2<br>D <sub>a,máx</sub> a<br>tida pe<br>c residu<br>ermitida<br>D <sub>b,máx</sub> a                      | -1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>present<br>a ABN<br>al apre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>rada (m<br>T NBR<br>resentace<br>ABNT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0,3<br>0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>nm)<br>10821<br>la (mm<br>NBR 10                           | 0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm                                         | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0                          | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,0<br>,3<br>,0<br>,8<br>,7                   |
|                                  | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p                                                                                                     | -1,4<br>0,0<br>-2,3<br>-0,1<br>-4,1<br>-0,2<br>D <sub>a,máx</sub> altida pe<br>residuermitida<br>D <sub>b,máx</sub> altida pe                       | -1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>present<br>a ABN<br>al apre<br>a pela A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>ada (m<br>T NBR<br>sentac<br>ABNT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>10821<br>la (mm<br>NBR 10<br>nm)<br>10821                          | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2                  | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3                | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>0,0<br>0,3<br>0,0<br>0,8<br>0,7              |
|                                  | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,má Da,máx residual, p                                                                                               | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 0 <sub>a,máx</sub> al tida pe c residu ermitida 0 <sub>b,máx</sub> al tida pe c residu                                 | -1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>Dresent<br>a ABN<br>al apre<br>a pela A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D3 -0,5 0,0 -1,0 0,0 -1,9 -0,1 ada (n T NBR sentac ABNT I ada (n T NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>10821<br>la (mm<br>NBR 10<br>10821<br>la (mm                       | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm        | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3                | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0       |
|                                  | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p                                                                                                     | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 0 <sub>a,máx</sub> al tida pe c residu ermitida 0 <sub>b,máx</sub> al tida pe c residu                                 | -1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>present<br>a ABN<br>al apre<br>a pela A<br>present<br>a ABN<br>al apre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>rada (m<br>T NBR<br>resentace<br>ABNT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0,3<br>0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>nm)<br>10821<br>la (mm<br>NBR 10<br>nm)<br>10821<br>la (mm | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm        | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3                | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>0,0<br>0,3<br>0,0<br>0,8<br>0,7              |
|                                  | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,má Da,máx residual, p                                                                                               | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 0 <sub>a,máx</sub> al tida pe c residu ermitida 0 <sub>b,máx</sub> al tida pe c residu                                 | -1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>present<br>a ABN<br>al apre<br>a pela A<br>present<br>a ABN<br>al apre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D3 -0,5 0,0 -1,0 0,0 -1,9 -0,1 ada (n T NBR sentac ABNT I ada (n T NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0,3<br>0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>nm)<br>10821<br>la (mm<br>NBR 10<br>nm)<br>10821<br>la (mm | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm        | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3                | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0       |
| Comportant                       | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,má Da,máx residual, p  Db,máx residual, p                                                                           | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 0,a,máx al tida pe c residu ermitida 0,b,máx al tida pe c residu ermitida                                              | -1,7<br>0,0<br>-2,9<br>0,0<br>-5,3<br>-0,2<br>present<br>a ABN<br>al apre<br>a pela A<br>present<br>a ABN<br>al apre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D3 -0,5 0,0 -1,0 0,0 -1,9 -0,1 ada (m T NBR sentac ABNT I ada (m T NBR sentac ABNT I U = 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0,3<br>0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>nm)<br>10821<br>la (mm<br>NBR 10<br>nm)<br>10821<br>la (mm | -0,9<br>0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm        | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3                | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0       |
| •                                | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p  Db,máx, permi Db,máx residual, p                                                                   | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 0 <sub>a,máx</sub> a tida pe residu ermitida 0 <sub>b,máx</sub> a tida pe residu ermitida 0 tida pe de residu ermitida | -1,7 0,0 -2,9 0,0 -5,3 -0,2 Dresent a ABN al apre a pela A bresent a ABN al apre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>ada (m<br>T NBR<br>ssentac<br>ABNT I<br>ada (m<br>T NBR<br>ssentac<br>ABNT I<br>ada (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>10821<br>la (mm<br>NBR 10<br>10821<br>la (mm<br>NBR 10<br>I mm     | 0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm<br>)           | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3<br>6<br>0      | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0<br>,5       |
| bela 7 aprese                    | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p  Db,máx residual, p  Db,máx residual, p                                                             | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 0 <sub>a,máx</sub> al tida pe residu ermitida 0 <sub>b,máx</sub> al tida pe residu ermitida de seguermitida            | -1,7 0,0 -2,9 0,0 -5,3 -0,2 present a ABN al aprea a pela | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>ada (m<br>T NBR<br>ssentac<br>ABNT I<br>ada (m<br>T NBR<br>ssentac<br>ABNT I<br>ada (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>10821<br>la (mm<br>NBR 10<br>10821<br>la (mm<br>NBR 10<br>I mm     | 0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm<br>)           | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3<br>6<br>0      | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0<br>,5       |
| bela 7 aprese                    | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p  Db,máx, permi Db,máx residual, p                                                                   | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 0 <sub>a,máx</sub> al tida pe residu ermitida 0 <sub>b,máx</sub> al tida pe residu ermitida de seguermitida            | -1,7 0,0 -2,9 0,0 -5,3 -0,2 present a ABN al aprea a pela | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>ada (m<br>T NBR<br>ssentac<br>ABNT I<br>ada (m<br>T NBR<br>ssentac<br>ABNT I<br>ada (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>10821<br>la (mm<br>NBR 10<br>10821<br>la (mm<br>NBR 10<br>I mm     | 0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm<br>)           | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3<br>6<br>0      | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0<br>,5       |
| bela 7 aprese                    | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p  Db,máx residual, p  Db,máx residual, p                                                             | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 0 <sub>a,máx</sub> al tida pe residu ermitida 0 <sub>b,máx</sub> al tida pe residu ermitida de seguermitida            | -1,7 0,0 -2,9 0,0 -5,3 -0,2 present a ABN al aprea a pela | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>ada (m<br>T NBR<br>ssentac<br>ABNT I<br>ada (m<br>T NBR<br>ssentac<br>ABNT I<br>ada (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0<br>-0,5<br>0,0<br>-1,1<br>0,0<br>10821<br>la (mm<br>NBR 10<br>10821<br>la (mm<br>NBR 10<br>I mm     | 0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm<br>)           | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3<br>6<br>0      | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0<br>,5       |
| bela 7 aprese<br>tiva, sob carga | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,má Da,máx residual, p  Db,máx, permi Db,má Db,máx residual, p                                                       | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 D <sub>a,máx</sub> al tida pe c residu ermitida tida pe c residu ermitida de seg de pos distribu                       | -1,7 0,0 -2,9 0,0 -5,3 -0,2 present a ABN al apre a pela A present a ABN al apre a pela A present a ABN al apre a pela A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D3 -0,5 0,0 -1,0 0,0 -1,9 -0,1 ada (m T NBR sentac ABNT I ada (m T NBR tada (m T NBR t | D4 -0,3 0,0 -0,5 0,0 -1,1 0,0 nm) 10821 la (mm NBR 10 nm) 10821 la (mm NBR 10 nm) Visuais               | D5 -0,9 0,0 -1,7 0,0 -2,7 -0,1 -2 (mm ) 0821-2 -0821-2                               | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)               | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3<br>6<br>0<br>4 | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0<br>,5 |
| bela 7 aprese<br>tiva, sob carga | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p  Db,máx residual, p  Db,máx residual, p                                                             | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 D <sub>a,máx</sub> al tida pe c residu ermitida tida pe c residu ermitida de seç de pos distribu                       | -1,7 0,0 -2,9 0,0 -5,3 -0,2 present a ABN al aprea a pela | -0,5<br>0,0<br>-1,0<br>0,0<br>-1,9<br>-0,1<br>ada (m<br>T NBR<br>sentac<br>ABNT I<br>cada (m<br>T NBR<br>sentac<br>ABNT I<br>U = 0,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D4 -0,3 0,0 -0,5 0,0 -1,1 0,0 10821 la (mm NBR 10 nm) 10821 la (mm NBR 10 I mm                          | 0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>0821-2                | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>(mm)<br>(mm)       | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3<br>6<br>0<br>4 | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0<br>,5       |
| bela 7 aprese<br>tiva, sob carga | -546 Residual -1092 Residual -1820 Residual  Da,máx, permi Da,máx residual, p  Db,máx residual, p | -1,4 0,0 -2,3 -0,1 -4,1 -0,2 D <sub>a,máx</sub> al tida pe c residu ermitida tida pe c residu ermitida de seç de pos distribu                       | onesent a ABN al aprea a pela | -0,5 0,0 -1,0 0,0 -1,9 -0,1 ada (m T NBR sentace ABNT I cada (m T NBR sent | D4 -0,3 0,0 -0,5 0,0 -1,1 0,0 10821 la (mm NBR 10 nm) 10821 la (mm NBR 10 nm) visuais                   | 0,0<br>-1,7<br>0,0<br>-2,7<br>-0,1<br>-2 (mm<br>)<br>0821-2<br>-2 (mm<br>)<br>0821-2 | -0,4<br>0,0<br>-0,8<br>0,0<br>-4,4<br>0,0<br>n)<br>(mm)<br>(mm) | -0,6<br>0,0<br>-1,0<br>0,0<br>0,0<br>0,0<br>1<br>8<br>0<br>5<br>3<br>6<br>0<br>4 | -1,2<br>0,0<br>-2,1<br>0,0<br>-3,7<br>0,0<br>,3<br>,0<br>,8<br>,7<br>,5<br>,0<br>,5       |

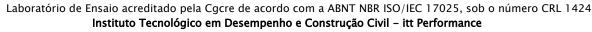
| Draga a (Da)                                                      |                                                                   | De   | forma | ção (m | m)   |      | Г.                 | ъ.                 |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------|------|-------|--------|------|------|--------------------|--------------------|--|
| Pressão (Pa)                                                      | D1                                                                | D2   | D3    | D4     | D5   | D6   | D <sub>a,máx</sub> | D <sub>b,máx</sub> |  |
| -546                                                              | -1,4                                                              | -1,7 | -0,5  | -0,3   | -0,9 | -0,4 | -0,6               | -1,2               |  |
| Residual                                                          | 0,0                                                               | 0,0  | 0,0   | 0,0    | 0,0  | 0,0  | 0,0                | 0,0                |  |
| -1092                                                             | -2,3                                                              | -2,9 | -1,0  | -0,5   | -1,7 | -0,8 | -1,0               | -2,1               |  |
| Residual                                                          | -0,1                                                              | 0,0  | 0,0   | 0,0    | 0,0  | 0,0  | 0,0                | 0,0                |  |
| -1820                                                             | -4,1                                                              | -5,3 | -1,9  | -1,1   | -2,7 | -4,4 | 0,0                | -3,7               |  |
| Residual                                                          | -0,2                                                              | -0,2 | -0,1  | 0,0    | -0,1 | 0,0  | 0,0                | 0,0                |  |
| D <sub>a,máx</sub> apresentada (mm)                               |                                                                   |      |       |        |      |      |                    | 1,0                |  |
| D <sub>a,máx</sub> , perm                                         | D <sub>a,máx</sub> , permitida pela ABNT NBR 10821-2 (mm)         |      |       |        |      |      |                    | ,3                 |  |
| D <sub>a,máx</sub> residual apresentada (mm)                      |                                                                   |      |       |        |      | 0    | ,0                 |                    |  |
| D <sub>a,máx</sub> residual, permitida pela ABNT NBR 10821-2 (mm) |                                                                   |      |       |        |      | 5    | ,8                 |                    |  |
| D <sub>b,máx</sub> apresentada (mm)                               |                                                                   |      |       |        |      |      | 3,7                |                    |  |
| D <sub>b,máx</sub> , permitida pela ABNT NBR 10821-2 (mm)         |                                                                   |      |       |        |      |      | 6,5                |                    |  |
| D <sub>b,máx</sub> residual apresentada (mm)                      |                                                                   |      |       |        |      |      |                    | ,0                 |  |
| D <sub>b,máx</sub> residual, p                                    | D <sub>b,máx</sub> residual, permitida pela ABNT NBR 10821-2 (mm) |      |       |        |      |      |                    | ,5                 |  |
| U = 0,1 mm                                                        |                                                                   |      |       |        |      |      |                    |                    |  |

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

| Pressão (Pa) | Aplicação   | Ocorrência                   |
|--------------|-------------|------------------------------|
| + 2730       | 1º positiva | Nenhuma ocorrência de falhas |
| + 2730       | 2º positiva | Neilliuma ocorrenda de famas |
| - 2730       | 1º negativa | Nonhuma operrância de felhas |
|              | 2º negativa | Nenhuma ocorrência de falhas |

|                                                                   | F96 – F                    | RELATÓRIO DE ENSAIO                                                         | Institutos Tecnológico       |  |  |  |
|-------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------|------------------------------|--|--|--|
|                                                                   | Relat                      | ório N° 5079a/2023                                                          |                              |  |  |  |
| т                                                                 | abela 7 – Ocorrê           | encia de falhas durante o ensaio                                            |                              |  |  |  |
| Pressão (Pa)                                                      | Aplicação                  | Ocoi                                                                        | rrência                      |  |  |  |
| + 2730                                                            | 1º positiva                | Nenhuma ocorrência de falhas                                                |                              |  |  |  |
|                                                                   | 2º positiva<br>1º negativa |                                                                             |                              |  |  |  |
| - 2730                                                            | 2º negativa                | Nenhuma oco                                                                 | rrência de falhas            |  |  |  |
| Slaggifiage 2                                                     |                            |                                                                             |                              |  |  |  |
| <b>Classificação</b><br><sup>-</sup> abela 8 apresenta os resulta | dos obtidos ao lor         | ngo dos ensaios realizados, bem c                                           | omo a indicação dos níveis d |  |  |  |
| •                                                                 |                            | ada. A classificação é realizada                                            | •                            |  |  |  |
| dição, quando aplicável, na s                                     | •                          | ·                                                                           |                              |  |  |  |
| dição, quando aplicavei, na s                                     | nidação critica, ia        | volavel a segulaliça.                                                       |                              |  |  |  |
|                                                                   | Tabela 8 – Níve            | eis de desempenho atingidos                                                 |                              |  |  |  |
|                                                                   | Tabela 0 - NIV             |                                                                             | Nível de desempenho          |  |  |  |
| Ensaio                                                            |                            | Resultado obtido                                                            | atingido*                    |  |  |  |
| Permeabilidade ao ar –                                            | Vazão por<br>área          | 12,8 m³/h x m²                                                              | Intermediário                |  |  |  |
| inicial                                                           | Vazão por comprimento      | 2,6 m³/h x m                                                                | Intermediário                |  |  |  |
| Estanqueidade à à                                                 | igua                       | Presença de água no trilho<br>Ocorrência de PI                              | Mínimo                       |  |  |  |
|                                                                   | Pressão                    | D <sub>a</sub> max = 1,2 mm<br>D <sub>a</sub> max residual = 0,0 mm         |                              |  |  |  |
|                                                                   | positiva                   | $D_b$ max = 3,9 mm                                                          | Atende aos requisitos da     |  |  |  |
| Resistência às cargas                                             |                            | D <sub>b</sub> max residual = 0,1 mm                                        | ABNT NBR 10821:2017          |  |  |  |
| niformemente distribuídas**                                       | Pressão                    | Dmax = 1,0 mm                                                               |                              |  |  |  |
|                                                                   | negativa<br>Pressão de     | Dmax residual = 0,0 mm  Nenhuma ocorrência de falha                         | Atende aos requisitos da     |  |  |  |
|                                                                   | segurança                  | foi observada                                                               | ABNT NBR 10821:2017          |  |  |  |
| ermeabilidade ao ar – após                                        | Vazão por<br>área          | 22,5 m³/h x m²                                                              | Intermediário                |  |  |  |
| carga uniformemente<br>distribuída                                | Vazão por comprimento      | 4,64 m³/h x m                                                               | Intermediário                |  |  |  |
|                                                                   |                            | ficação da esquadria as condições                                           | de ensaio referentes à       |  |  |  |
| essão de água (Pa) de 300 F                                       |                            | iriaa nara alaasifisaasa naa niyois                                         | mínimo intermediário eu      |  |  |  |
| iperior de desempenho para                                        |                            | erios para classificação nos níveis i                                       | minimo, intermediano od      |  |  |  |
|                                                                   |                            |                                                                             |                              |  |  |  |
| Observações                                                       |                            |                                                                             |                              |  |  |  |
| OS RESULTADOS APRESEN                                             | NTADOS NESTE REL           | ATÓRIO REFEREM-SE SOMENTE AOS I                                             | TENS ENSAIADOS.              |  |  |  |
| • CONTENDO 13 PÁGINAS,                                            | O PRESENTE RE              | LATÓRIO TÉCNICO FOI ELABORADO                                               | PELA EQUIPE TÉCNICA DO       |  |  |  |
| Performance/UNISINOS E OS                                         | RESULTADOS AQU             | I APRESENTADOS NÃO PODEM SER UT                                             | ILIZADOS INDISCRIMINADAMENT  |  |  |  |
| SENDO VÁLIDOS SOMEN                                               | TE NO ÂMBITO DE            | STE DOCUMENTO, SENDO VEDADA                                                 | SUA REPRODUÇÃO PARCIAL.      |  |  |  |
| GENERALIZAÇÃO DOS RES                                             | ULTADOS PARA QU            | ALQUER LOTE/UNIVERSO SERÁ DE RES                                            | SPONSABILIDADE DO CLIENTE.   |  |  |  |
|                                                                   |                            |                                                                             |                              |  |  |  |
|                                                                   |                            | de acordo com a ABNT NBR ISO/IEC 170                                        |                              |  |  |  |
| instituto                                                         |                            | sempenho e Construção Civil - itt Perfo<br>o do Formulário: 07 (07/04/2022) | rmance                       |  |  |  |
| Código da Versão do Tem                                           |                            | NCORRPER(R)-V01 (Data da Versão do                                          | Template: 11/04/2022)        |  |  |  |
|                                                                   | ,a                         |                                                                             |                              |  |  |  |

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4




- O LABORATÓRIO NÃO FOI RESPONSÁVEL PELA AMOSTRAGEM DO(S) ITEM(NS) ENSAIADO(S), E OS RESULTADOS SE APLICAM À(S) AMOSTRA(S) CONFORME RECEBIDA(S).
- ESTE RELATÓRIO SUBSTITUI O RELATÓRIO DE ENSAIO Nº5079/2023. ALTERAÇÃO NA LINHA DA ESQUADRIA.

## 9. Responsáveis pelo relatório

| Nome do responsável                       | Função                                       |
|-------------------------------------------|----------------------------------------------|
|                                           | Coordenador do itt Performance e Responsável |
| Dr. Eng. Civil Roberto Christ             | Técnico                                      |
|                                           | CREA RS nº 182890                            |
| Dr. Eng. Civil Hinoel Zamis Ehrenbring    | Engenheiro Civil                             |
| 21. Ling. Civil I intool Zumio Emonioring | CREĂ RS nº 216147                            |

Emitido em 22 de março de 2024.



Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

Fone: 51 3590-8887 - e-mail: ittperformance@unisinos.br

Documento assinado eletronicamente. Para verificar sua validade contate seus signatários. (756300ADDF7CA6F757B82F0A6EAF9EC27B9C23644A0A6B4CA0DA23291821D3A4)

# UNISINOS

## F96 - RELATÓRIO DE ENSAIO Relatório Nº 5079a/2023

### Anexo A - Projeto da esquadria

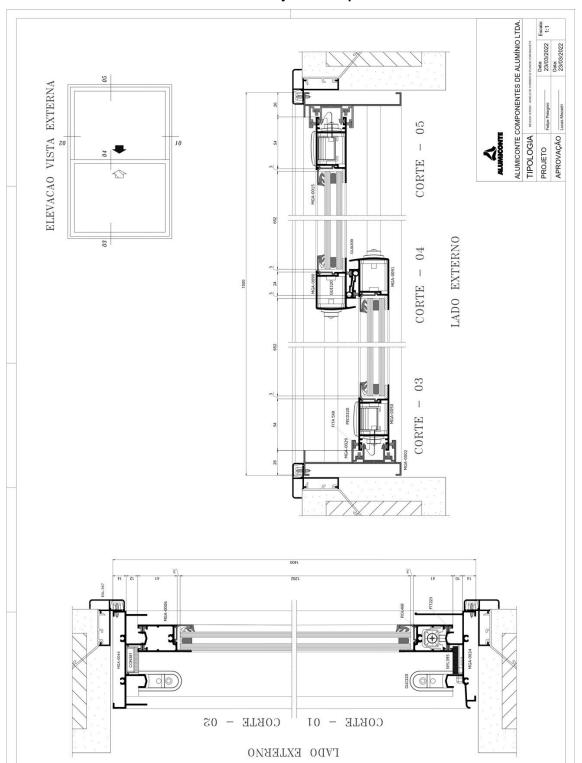



Figura A.1 - Elevações e cortes da esquadria ensaiada

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil - itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4

Fone: 51 3590-8887 - e-mail: ittperformance@unisinos.br

Documento assinado eletronicamente. Para verificar sua validade contate seus signatários. (756300ADDF7CA6F757B82F0A6EAF9EC27B9C23644A0A6B4CA0DA23291821D3A4)



### Anexo B - Tabela de classificação (ABNT NBR 10821-2:2017)

Tabela B.1 – Valores de pressão de vento conforme a região do país e o número de pavimentos da edificação

| Quantidade<br>de<br>pavimentos | Altura<br>máxima | Região<br>do país | Pressão de ensaios <i>(Pe)</i><br>positiva e negativa | Pressão de<br>segurança <i>(Ps)</i><br>positiva e negativa | Pressão de<br>água <i>(Pa)</i> |
|--------------------------------|------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------|--------------------------------|
|                                |                  | I                 | 350                                                   | 520                                                        | 60                             |
|                                |                  | II                | 470                                                   | 700                                                        | 80                             |
| 2                              | 6 m              | III               | 610                                                   | 920                                                        | 100                            |
|                                |                  | IV                | 770                                                   | 1 160                                                      | 130                            |
|                                |                  | V                 | 950                                                   | 1 430                                                      | 160                            |
|                                |                  | I                 | 420                                                   | 640                                                        | 70                             |
|                                |                  | II                | 580                                                   | 860                                                        | 100                            |
| 5                              | 15 m             | III               | 750                                                   | 1130                                                       | 130                            |
|                                |                  | IV                | 950                                                   | 1 430                                                      | 160                            |
|                                |                  | V                 | 1 180                                                 | 1 760                                                      | 200                            |
|                                | 30 m             | I                 | 500                                                   | 750                                                        | 80                             |
| 10                             |                  | II                | 680                                                   | 1 030                                                      | 110                            |
|                                |                  | III               | 890                                                   | 1 340                                                      | 150                            |
|                                |                  | IV                | 1 130                                                 | 1 700                                                      | 190                            |
|                                |                  | V                 | 1 400                                                 | 2090                                                       | 230                            |
|                                |                  | I                 | 600                                                   | 900                                                        | 100                            |
|                                |                  | II                | 815                                                   | 1 220                                                      | 140                            |
| 20                             | 60 m             | III               | 1 060                                                 | 1 600                                                      | 180                            |
|                                |                  | IV                | 1 350                                                 | 2 020                                                      | 220                            |
|                                |                  | V                 | 1 660                                                 | 2 500                                                      | 280                            |
|                                |                  | I                 | 660                                                   | 980                                                        | 110                            |
|                                |                  | II                | 890                                                   | 1 340                                                      | 150                            |
| 30                             | 90 m             | III               | 1 170                                                 | 1 750                                                      | 200                            |
|                                |                  | IV                | 1 480                                                 | 2 210                                                      | 250                            |
|                                |                  | V                 | 1 820                                                 | 2 730                                                      | 300                            |

Final do Relatório – Recomendam-se cuidados para publicação destes resultados e, quando necessário esta publicação, o relatório deve ser reproduzido na íntegra. Reprodução em partes requer aprovação escrita do laboratório. A próxima página se refere a comprovação das assinaturas digitais.

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 1424 Instituto Tecnológico em Desempenho e Construção Civil – itt Performance

Revisão do Modelo do Formulário: 07 (07/04/2022)

Código da Versão do Template: P-LASE-ESTJANCORRPER(R)-V01 (Data da Versão do Template: 11/04/2022)

Av. Unisinos, 950 CEP 93.022-750 - São Leopoldo (RS) - Entrada pelo Acesso 4





# PROTOCOLO DE AÇÕES

Este é um documento assinado eletronicamente pelas partes, utilizando métodos de autenticações eletrônicas que comprovam a autoria e garantem a integridade do documento em forma eletrônica. Esta forma de assinatura foi admitida pelas partes como válida e deve ser aceito pela pessoa a quem o documento for apresentado. Todo documento assinado eletronicamente possui admissibilidade e validade legal garantida pela Medida Provisória nº 2.200-2 de 24/08/2001.

Data de emissão do Protocolo: 23/03/2024

### **Dados do Documento**

Tipo de Documento Laudo técnico Referência Contrato RT Perf 5079a Situação Vigente / Ativo Data da Criação 23/03/2024

Validade 23/03/2024 até Indeterminado

Hash Code do Documento 756300ADDF7CA6F757B82F0A6EAF9EC27B9C23644A0A6B4CA0DA23291821D3A4

### Assinaturas / Aprovações

Papel (parte) Responsável

Relacionamento 92.959.006/0008-85 - UNISINOS

**Roberto Christ** 004.127.370-27

Assinado em 23/03/2024 08:55:08 - Forma de assinatura: Usuário +

Ação: 2804:10c4:a7a0:636c:f147:bb71:eb01:c013

Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Info.Navegador Safari/537.36

Localização Não Informada

Tipo de Acesso Normal

Representante

020.791.930-58 **Hinoel Zamis Ehrenbring** 

Assinado em 23/03/2024 08:54:43 - Forma de assinatura: Usuário + Ação: **IP:** 2804:10c4:a7a0:636c:f147:bb71:eb01:c013

Mozilla/5.0 (Macintosh; Intel Mac OS X 10\_15\_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Info.Navegador

Safari/537.36 Localização Não Informada

Normal

Tipo de Acesso

Os serviços de assinatura digital deste portal contam com a garantia e confiabilidade da AR-QualiSign, Autoridade de Registro vinculada à ICP-Brasil.

### Validação de documento não armazenado no Portal QualiSign

Caso o documento já tenha sido excluído do Portal QualiSign, a verificação poderá ser feita conforme a seguir;

a.) Documentos assinados exclusivamente com Certificado Digital (CADES)

A verificação poderá ser realizada em

https://www.qualisign.com.br/portal/dc-validar, desde que você esteja de posse do documento original e do arquivo que contém as assinaturas (.P7S). Você também poderá fazer a validação no site do ITI – Instituto Nacional de Tecnologia da Informação através do endereço <a href="https://verificador.iti.gov.br/">https://verificador.iti.gov.br/</a>

b.) Documentos assinados exclusivamente com Certificado Digital (PADES)

Para documentos no formato PDF, cuja opção de assinatura tenha sido assinaturas autocontidas (PADES), a verificação poderá ser feita a partir do documento original (assinado), utilizando o Adobe Reader. Você também poderá fazer a validação no site do ITI – Instituto Nacional de Tecnologia da Informação através do endereço <a href="https://verificador.iti.gov.br/">https://verificador.iti.gov.br/</a>

c.) Documentos assinados exclusivamente SEM Certificado Digital ou de forma híbrida (Assinaturas COM Certificado Digital e SEM Certificado Digital, no mesmo documento)

Para documento híbrido, as assinaturas realizadas COM Certificado Digital poderão ser verificadas conforme descrito em (a) ou (b), conforme o tipo de assinatura do documento (CADES ou PADES).

A validade das assinaturas SEM Certificado Digital é garantida por este documento, assinado e certificado pela QualiSign.

### Validade das Assinaturas Digitais e Eletrônicas

No âmbito legal brasileiro e em também em alguns países do Mercosul que já assinaram os acordos bilaterais, as assinaturas contidas neste documento cumprem, plenamente, os requisitos exigidos na Medida Provisória 2.200-2 de 24/08/2001, que instituiu a Infraestrutura de Chaves Públicas Brasileira - ICP-Brasil e transformou o ITI – Instituto Nacional de Tecnologia da Informação em autarquia garantidora da autenticidade, integridade, não-repúdio e irretroatividade, em relação aos signatários, nas declarações constantes nos documentos eletrônicos assinados, como segue:

- Art. 10. Consideram-se documentos públicos ou particulares, para todos os fins legais, os documentos eletrônicos de que trata esta Medida Provisória.
- § 1º. As declarações constantes dos documentos em forma eletrônica produzidos com a utilização de processo de certificação disponibilizado pela ICP-Brasil presumem-se verdadeiros em relação aos signatários, na forma do art. 131 da Lei no 3.071, de 1o de janeiro de 1916 Código Civil.
- § 2º. O disposto nesta Medida Provisória não obsta a utilização de outro meio de comprovação da autoria e integridade de documentos em forma eletrônica, inclusive os que utilizem certificados não emitidos pela ICP-Brasil, desde que admitido pelas partes como válido ou aceito pela pessoa a quem for oposto o documento.

Pelo exposto, o presente documento encontra-se devidamente assinado pelas Partes, mantendo plena validade legal e eficácia jurídica perante terceiros, em juízo ou fora dele.